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Abstract. The performance of enumerating all solutions to an instance
of Langford’s Problem is sensitive to the model and the search strategy.
In this paper we compare the performance of a large variety of models, all
derived from two base viewpoints. We empirically show that a channelled
model with a static branching order on one of the viewpoints offers the
best performance out of all the options we consider. Surprisingly, one of
the base models proves very effective for propagation, while the other
provides an effective means of stating a static search order.

1 Introduction

Langford’s Problem (number 24 at www.csplib.org) is specified as follows.

Arrange k sets of numbers 1 to n in a sequence, so that each appearance
of the number m is m numbers on from the last. For example, the L(3,9)
problem is to arrange 3 sets of the numbers 1 to 9 so that the first two
1’s and the second two 1’s appear one number apart, the first two 2’s
and the second two 2’s appear two numbers apart, etc.

Alternative constraint programming models and search strategies for this
problem were explored first by Smith [17]. Smith presented two models: the first
corresponds to what we call the Positional approach in this paper (Section 2.2),
and the second model is the dual of the first one. When viewed as a permu-
tation problem, the dual viewpoint for a permutation may be constructed by
interchanging the variables and the values. This approach has been studied fur-
ther and generalised by [20,18,12,11,16]. Smith’s second model corresponds to
the Direct approach in this paper (Section 2.1) with one exception. In our direct
approach, a value m is repeated k times, whereas in [17] the second occurrence
of a value m is represented with m + n, the third with m + 2n, and so on.

In this paper we investigate the performance of a number of different models
and search strategies for Langford’s Problem. We first present two approaches to
modelling Langford’s Problem, using two separate viewpoints. We then employ
a very strict channelling constraint between the two viewpoints to construct
a channelled approach. We compare 20 variations in total, including the best
search heuristic identified by [17] and the AllSAT solver BC MINISAT ALL [19] to
enumerate all solutions. Our empirical evaluation shows that a static branching
order on the Direct viewpoint in a channelled model offers the best performance.
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2 Two Approaches to Modelling Langford’s Problem

In what follows we present two approaches to modelling this problem, using two
separate viewpoints, in the Essence [7,8,9] constraint specification language.
One is direct, has a sequence of numbers just like the problem specification.
The other is positional, has a function from numbers and the repetition to the
position in the sequence.

2.1 A Direct Approach

We first present a Direct problem specification for Langford’s Problem, given in
Figure 1. An Essence specification identifies: the input parameters of the prob-
lem class (given), whose values define an instance; the combinatorial objects to
be found (find); the constraints the objects must satisfy (such that); identifiers
declared (letting); and an (optional) objective function (min/maximising).
This specification contains a single decision variable with a domain of type
sequence, with a fixed length. In order to solve an Essence specification, it
is first refined into a solver-independent constraint model using the Conjure
automated constraint modelling system [1,2,3,4] and then prepared for input to
a particular constraint solver, such as Minion [10], or SAT by the Savile Row
system [13,14,15].

Sequences in Essence are not required to be of fixed length in general. A
fixed length sequence is very similar to a one-dimensional array, except for the
provision of some additional operators. For example, in this specification we use
the preImage operator (on line 29) to denote all the index positions of a certain
number. The apartness constraint (on lines 11–21) is written as a triply-nested
quantified expression. For each number there exists a starting position: the first
index where we see this particular number in the sequence. Once this position is
denoted, the apartness constraint can be posted by constraining the appropriate
positions in the sequence to be equal to the number in focus. As an alternative to
the existential quantification we could have used auxiliary variables to denote the
first positions of each number as a separate Essence variable. However, in this
case we feel the existential quantification is clearer. Furthermore, our constraint
modelling pipeline of Conjure and Savile Row is able to generate a top level
decision variable for the existentially quantified variables automatically. The
second constraint (on line 24) is for breaking the reflection symmetry. The third
constraint (lines 26–29) is implied: it states the fact that each number must
occur k times in the sequence.

2.2 A Positional Approach

A second specification of Langford’s Problem is what we call the Positional ap-
proach, presented in Figure 2. This contains a single decision variable with a
domain of type function. The function maps 2-tuples, where the first component
of the tuple is a number between 1 and n and the second component is the
repetition index. Each 2-tuple is mapped to a position in the sequence and since



Modelling Langford’s Problem: A Viewpoint for Search 3

1 language Essence 1.3

2
3 given k : int (2..)

4 given n : int (1..)

5
6 letting seqLength be k * n

7
8 $ The sequence of numbers

9 find seq : sequence (size seqLength) of int (1..n)

10
11 $ The apartness constraint

12 such that

13 $ for each number

14 forAll number : int (1..n) .

15 $ there exists a starting position

16 $ (i.e. the first position where number occurs)

17 exists start : int (1.. seqLength) .

18 $ the following positions all contain the same value

19 $ start , start +( number +1), start +2*( number +1), ...

20 forAll i : int (1..k) .

21 seq(start + (i-1) * (number +1)) = number

22
23 $ symmetry breaking

24 such that seq (1) < seq(seqLength)

25
26 $ Each number from 1 to n appear exactly k times in seq.

27 $ This is an implied constraint.

28 such that

29 forAll i : int (1..n) . |preImage(seq , i)| = k

Fig. 1. Essence Specification: Direct Approach to Modelling Langford’s Problem.

these positions need to be distinct, the function is marked to be injective. Con-
jure produces an all-different constraint when refining this injective function.
The apartness constraint (on lines 14–21) is written as a doubly-nested quanti-
fied expression, and for each number repetition pair it posts a binary constraint.
The second constraint (on line 27) is for breaking the reflection symmetry.

2.3 Channelling the Direct and Positional Approaches

We combine the direct and positional into a single channelled [6] approach. In
order to do so we concatenate the two specifications into one file, excluding the
common definitions like the k and the n. We keep all the constraints regarding the
problem definition in both individual specifications. The two symmetry breaking
constraints are not compatible with each other, so if we post both of them we
would lose solutions. We keep one or the other in our empirical evaluation.
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1 language Essence 1.3

2
3 given k : int (2..)

4 given n : int (1..)

5
6 letting number be domain int (1..n)

7 letting repetition be domain int (1..k)

8 letting position be domain int (1..k*n)

9
10 $ The positions of all repetitions of all numbers

11 find pos : function (total , injective)

12 tuple (number , repetition) --> position

13
14 $ Occurrences of number i must be i+1 places apart.

15 $ So if the number 4 appears at position 3,

16 $ the next occurrence of it must be at position 8,

17 $ leaving a gap of 4 positions.

18 such that

19 forAll i : number .

20 forAll j : int (2..k) .

21 pos(tuple (i,j)) = pos(tuple (i,j-1)) + i + 1

22
23 $ symmetry breaking

24 $ The first occurrence of the number 1 is closer to the

beginning than its last occurrence is to the end.

25 such that

26 pos(tuple (1,1)) - 1 < k*n - pos(tuple (1,k))

Fig. 2. Essence Specification: Positional Approach to Modelling Langford’s Problem.

The channelling constraints (Figure 3) are very tight by design. Specifically,
they only allow one assignment to the seq variable for each assignment to the
pos variable and vice versa. We validate this by removing the problem constraint
from either viewpoint and enumerating all solutions.

The first channelling constraint (on lines 1–5) set values of seq from values
of pos. The second channelling constraint (on lines 8–11) does the inverse. The
third constraint (on lines 13–17) is not required when both problem constraints
are present, but when the Positional constraints are removed they provide tighter
channelling and break symmetry.

3 Empirical Evaluation

We compare the performance of solving 80 instances using the two base ap-
proaches, variations of channelled approach and a number of search strategies.
The instances are generated for values of 2..6 for k, and for values of 2..17 for
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1 $ from pos to seq

2 such that

3 forAll i : number .

4 forAll j : repetition .

5 seq(pos(tuple (i,j))) = i

6
7 $ from seq to pos

8 such that

9 forAll i : int (1..k*n) .

10 exists j : repetition .

11 pos(tuple (seq(i),j)) = i

12
13 $ entries in pos are ordered

14 such that

15 forAll i : number .

16 forAll j : int (2..k) .

17 pos(tuple (i,j-1)) < pos(tuple (i,j))

Fig. 3. Channelling constraints for integrating the Direct and Positional models in
Essence

n. We use a timeout of four hours for each model-instance pair. Three instances
((2, 15), (2, 16), (2, 17)) cannot be solved with any of our models, and these are
excluded from our analysis. A further thirty instances are trivial (solved by one
of the base models in under 5 search nodes), and these are kept in the plots.
We analyse the 47 non-trivial instances in more detail. The Essence specifi-
cations, the parameter files, scripts for rerunning the experiments, and the raw
data containing our results can be found in a source code repository hosted at
http://github.com/stacs-cp/ModRef2018-Langfords.

3.1 Comparing the Two Base Approaches

We compare the Direct and Positional approaches, using our modelling pipeline
(Conjure 2.2.0, Savile Row 1.7.0) to produce constraint models suitable for
input to Minion 1.8. We employ the default static branching order of Minion:
the default variable ordering is by order of appearance, and the default value
ordering is lexicographic. In general the positional model performs better (Fig-
ure 4): it is able to enumerate all solutions to all but three of out 77 instances.
The Direct model times out for 40 instances and performs much worse on the
small number of instances it can solve.

A more advanced variable ordering heuristic is weighted-degree [5]. Minion
implements two variations of weighted-degree heuristics, the plain wdeg and an-
other one that also takes the domain size into account: domoverwdeg. In Figure 5,
we see that the Positional model performs even better with one of the weighted
degree heuristics (in comparison to static ordering) and it is significantly better
than the Direct model.

http://github.com/stacs-cp/ModRef2018-Langfords
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Fig. 4. Search nodes with static variable ordering with the Direct model vs the Posi-
tional model. Sorted by Positional. The timed-out instances are not plotted.

Fig. 5. Search nodes with weighted degree search heuristic with the Direct model vs
the Positional model. Sorted by Positional-domoverwdeg. The timed-out instances are
not plotted.

3.2 Channelled Approaches

At this point the Direct approach may seem hopeless. The Positional approach
gives much better performance with the static variable ordering and with weighted
degree heuristics in comparison.

In [17], after considering several options the best model is found to be a
channelled model, with a smallest domain first variable ordering heuristic. In
that paper the authors do not break the reflection symmetry in any of their
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models, in this paper we would like to break this symmetry. Since each model
comes with a symmetry breaking constraint and since these are incompatible,
we experiment with each one separately. In Figure 6, these models are denoted
by ‘SDF sym:P’ when the symmetry breaking constraint of the Positional model
is used, and by ‘SDF sym:D’ when the Direct one is used. We compare the
performance of the channelled models with the performance of the best model
so far: Positional-domoverwdeg. The results are given in Figure 6.

Interestingly, the performance of the smallest domain first heuristic on the
channelled model seems to depend heavily on which symmetry breaking con-
straint is used. The ‘SDF sym:P’ version gives better results than Positional-
domoverwdeg, whereas ‘SDF sym:D’ is much worse overall.

Fig. 6. Search nodes with the smallest domain first heuristic on channelled models vs
Positional-domoverwdeg. Sorted by Positional-domoverwdeg. The timed-out instances
are not plotted.

Figure 7 gives the difference between the ‘branch:D sym:D cons:Both’ and
‘branch:P sym:P cons:Both’ variations, where the first one uses a static vari-
able ordering on the Direct model and the second one on the Positional model.
Each model uses the corresponding symmetry breaking constraint and both sets
of problem constraints. Hence, in comparison to the results given in Figure 4,
these two variations use the same search order. However the results are inverted:
branching on the Direct variables in the channelled model gives significantly bet-
ter results than branching on the Positional variables. The Direct model by itself
performs worse than the Positional model, yet branching on the Direct model
performs significantly better than branching on the Positional model when the
two models are channelled.

For reference, Table 1 provides detailed search node results across the best
six models. It is evident that the static variable ordering on the direct variables
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Fig. 7. Comparing the number of search nodes between static variable ordering on the
Direct variables vs the Positional variables. Sorted by the ‘branch:D sym:D’ variation.

results in the smallest number of search nodes. Further reductions are obtained
by using the symmetry breaking constraints of the direct model and keeping
both sets of constraints.

3.3 Comparison against BC MINISAT ALL

We compare the performance of one of the best CP models to that of an AllSAT
solver, BC MINISAT ALL [19]. We use Savile Row to produce a SAT encoding
for the Direct model, the Positional model, and a channelled model with the
symmetry breaking constraint from the Positional model. We only experiment
with these three variations for SAT, since variable ordering heuristics cannot be
specified like they can in a constraint solver.

The SAT encoding for the Direct model times out on eleven of 77 instances
with a 4-hour timeout, and the Positional model times out on four. The chan-
nelled model performs better than either model in SAT as well, it solves all
instances in 13,266 seconds in total. In comparison the channelled constraint
model with the ‘branch:D sym:P cons:P’ variation (branching on Direct vari-
ables, symmetry breaking using the Positional constraint, and only using the
Positional problem constraints) solves all instances in 7,408 seconds in total.

4 Conclusion

In this paper we have studied the performance of two different viewpoints of
Langford’s Problem, both separately and channelled together. Earlier work has
demonstrated the utility of the channelled approach, but in contrast to previ-
ous findings, we found that the most effective search strategy to exploit the
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Instance
Positional
dom-wdeg

branch:D
sym:D

cons:Both

branch:D
sym:D
cons:P

branch:D
sym:P

cons:Both

branch:D
sym:P
cons:P

SDF sym:D

02 06 15 28 28 0 12 34
02 07 214 160 160 163 163 161
02 08 1,026 730 730 740 740 741
02 09 4,112 3,015 3,015 3,075 3,075 3,111
02 10 23,064 16,526 16,526 16,758 16,758 17,455
02 11 157,243 118,165 118,165 119,791 119,791 124,268
02 12 1,050,620 768,853 768,853 779,204 779,204 822,842
02 13 6,843,313 4,705,524 4,705,524 4,753,110 4,753,110 5,202,212
02 14 53,422,836 35,680,214 35,680,214 36,123,258 36,123,258 40,377,181
03 07 36 20 24 24 27 23
03 08 115 80 81 87 87 75
03 09 402 248 248 279 279 230
03 10 1,550 867 867 999 999 898
03 11 6,678 3,495 3,495 3,766 3,766 3,609
03 12 29,239 13,127 13,127 14,978 14,978 14,937
03 13 140,685 54,281 54,281 57,563 57,563 66,819
03 14 679,085 235,009 235,009 257,019 257,019 298,246
03 15 3,789,394 1,102,150 1,102,150 1,171,173 1,171,173 1,546,663
03 16 21,707,561 5,384,480 5,384,480 5,758,755 5,758,755 8,079,517
03 17 129,546,336 27,773,357 27,773,357 28,875,464 28,875,464 46,099,072
04 08 47 0 20 40 45 0
04 09 103 53 53 85 85 53
04 10 225 134 134 198 198 123
04 11 892 375 375 563 563 404
04 12 2,902 1,075 1,075 1,515 1,515 1,390
04 13 10,774 2,816 2,816 3,873 3,873 3,990
04 14 40,113 9,186 9,186 12,480 12,480 13,291
04 15 167,448 29,091 29,091 38,974 38,974 53,075
04 16 688,349 93,089 93,089 124,407 124,407 184,673
04 17 3,131,087 334,480 334,480 444,709 444,709 755,651
05 09 14 0 0 0 0 0
05 10 50 0 0 61 64 0
05 11 203 108 112 179 179 167
05 12 547 251 251 365 365 268
05 13 1,517 440 440 679 679 547
05 14 4,782 1,051 1,051 1,580 1,580 1,459
05 15 16,045 2,391 2,391 3,723 3,723 4,151
05 16 51,894 6,743 6,743 9,527 9,527 14,315
05 17 192,892 17,974 17,974 24,685 24,685 42,428
06 10 19 0 0 0 0 0
06 11 83 51 52 85 89 42
06 12 208 99 101 151 151 107
06 13 349 147 150 233 233 138
06 14 1,142 406 406 605 605 507
06 15 3,232 765 766 1,203 1,203 1,218
06 16 8,475 1,642 1,642 2,443 2,443 2,954
06 17 27,293 3,424 3,424 5,165 5,165 7,170

Mean 4,718,175 1,624,811 1,624,812 1,672,633 1,672,633 2,207,366
Sum 221,754,209 76,366,120 76,366,156 78,613,734 78,613,761 103,746,215

Table 1. Search nodes for our best six models of Langford’s Problem.
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channelled models is a static variable ordering on the viewpoint that, in isola-
tion, is weaker. Our conjecture is that, through the channelling constraints, this
static variable ordering produces a high quality dynamic variable ordering on
the second viewpoint.

In future work, we will investigate whether this finding can be translated to
other problem classes and whether our findings also hold with other constraint
solvers.
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